Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Biophys Chem ; 309: 107228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552402

RESUMO

ß-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of ß-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the ß-lactam ring, is the major mechanism for bacterial resistance to ß-lactams. In particular, among class A, B, C and D ß-lactamases, metallo-ß-lactamases (MBLs, class B ß-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat ß-lactamase-mediated resistance, great efforts have been made to develop ß-lactamase inhibitors that restore the activity of ß-lactams. Some ß-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-ß-lactamases (SBLs, class A, C, and D ß-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of ß-lactamase and mechanisms by which ß-lactam antibiotics are inactivated, but also the research finding on ß-lactamase inhibitors targeting these enzymes. These detailed information on ß-lactamases and their inhibitors could give valuable information for novel ß-lactamase inhibitors design.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamases , Resistência Microbiana a Medicamentos
2.
Antimicrob Agents Chemother ; 68(3): e0134023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38364015

RESUMO

We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Nafcilina , beta-Lactamas/metabolismo , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Oxacilina/farmacologia , Oxacilina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
J Biomol Struct Dyn ; 42(1): 298-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974951

RESUMO

Antibacterial resistance to ß-lactams in microorganisms has been attributed majorly to alterations in penicillin-binding proteins (PBPs) coupled with ß-lactams' inactivation by ß-lactamase. Consequently, the identification of a novel class of therapeutics with improved modulatory action on the PBPs is imperative and plant secondary metabolites, including phenolics, have found relevance in this regard. For the first time in this study, the over 10,000 phenolics currently known were computationally evaluated against PBP3 of Pseudomonas aeruginosa, a superbug implicated in several nosocomial infections. In doing this, a library of phenolics with an affinity for PBP3 of P. aeruginosa was screened using structure-activity relationship-based pharmacophore and molecular docking approaches. Subsequent thermodynamic screening of the top five phenolics with higher docking scores, more drug-likeness attributes, and feasible synthetic accessibility was achieved through a 120 ns molecular dynamic (MD) simulation. Four of the top five hits had higher binding free energy than cefotaxime (-18.72 kcal/mol), with catechin-3-rhamside having the highest affinity (-28.99 kcal/mol). All the hits were stable at the active site of the PBP3, with catechin-3-rhamside being the most stable (2.14 Å), and established important interactions with Ser294, implicated in the catalytic activity of PBP3. Also, PBP3 became more compact with less fluctuation of the active site amino acid residues following the binding of the hits. These observations are indicative of the potential of the test compounds as PBP3 inhibitors, with catechin-3-rhamside being the most prominent of the compounds that could be further improved for enhanced druggability against PBP3 in vitro and in vivo.Communicated by Ramaswamy H. Sarma.


Assuntos
Catequina , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/química , Pseudomonas aeruginosa/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/farmacologia , beta-Lactamas/química , beta-Lactamas/metabolismo
4.
J Gen Appl Microbiol ; 69(4): 234-238, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37302827

RESUMO

Six aromatic secondary metabolites, pestalone (1), emodin (2), phomopsilactone (3), pestalachlorides B (4), C (5), and D (6), were isolated from Pestalotiopsis sp. FKR-0115, a filamentous fungus collected from white moulds growing on dead branches in Minami Daito Island. The efficacy of these secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA) with and without meropenem (ß-lactam antibiotic) was evaluated using the paper disc method and broth microdilution method. The chemical structures of the isolated compounds (1-6) were characterised using spectroscopic methods, including nuclear magnetic resonance and mass spectrometry. All six isolated compounds exhibited synergistic activity with meropenem against MRSA. Among the six secondary metabolites, pestalone (1) overcame bacterial resistance in MRSA to the greatest extent.


Assuntos
Benzofenonas , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Antibacterianos/farmacologia , Meropeném/metabolismo , Meropeném/farmacologia , Pestalotiopsis , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Resistência beta-Lactâmica , Testes de Sensibilidade Microbiana
5.
Arch Med Res ; 55(1): 102916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039802

RESUMO

Clavulanic acid (CLAV) is a non-antibiotic ß-lactam that has been used since the late 1970s as a ß-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that ß-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.


Assuntos
Antibacterianos , beta-Lactamas , Ácido Clavulânico/uso terapêutico , Ácido Clavulânico/metabolismo , Ácido Clavulânico/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Núcleo Accumbens/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo
6.
Nat Commun ; 14(1): 8198, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081813

RESUMO

Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of ß-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered ß-lactam ring of nitrocefin, an antibiotic ß-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of ß-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed ß-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of ß-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Antibióticos beta Lactam , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Monobactamas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Infecções Estafilocócicas/microbiologia , Bactérias
7.
Sci Rep ; 13(1): 12959, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563215

RESUMO

Bacterial biofilms contribute significantly to pathogenesis, recurrence and/or chronicity of the majority of bacterial diseases due to their notable recalcitrance to clearance. Herein, we examined kinetics of the enhanced sensitivity of nontypeable Haemophilus influenzae (NTHI) newly released (NRel) from biofilm residence by a monoclonal antibody against a bacterial DNABII protein (α-DNABII) to preferential killing by a ß-lactam antibiotic. This phenotype was detected within 5 min and lasted for ~ 6 h. Relative expression of genes selected due to their known involvement in sensitivity to a ß-lactam showed transient up-regulated expression of penicillin binding proteins by α-DNABII NTHI NRel, whereas there was limited expression of the ß-lactamase precursor. Transient down-regulated expression of mediators of oxidative stress supported similarly timed vulnerability to NADPH-oxidase sensitive intracellular killing by activated human PMNs. Further, transient up-regulated expression of the major NTHI porin aligned well with observed increased membrane permeability of α-DNABII NTHI NRel, a characteristic also shown by NRel of three additional pathogens. These data provide mechanistic insights as to the transient, yet highly vulnerable, α-DNABII NRel phenotype. This heightened understanding supports continued validation of this novel therapeutic approach designed to leverage knowledge of the α-DNABII NRel phenotype for more effective eradication of recalcitrant biofilm-related diseases.


Assuntos
Anticorpos Monoclonais , Matriz Extracelular de Substâncias Poliméricas , Humanos , Anticorpos Monoclonais/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Haemophilus influenzae/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Fenótipo , beta-Lactamas/metabolismo
8.
Small ; 19(47): e2304194, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490549

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial keratitis is highly intractable, with strong resistance to ß-lactam antibiotics. Inhibiting the MRSA resistance gene mecR1 to downregulate penicillin-binding protein PBP2a has been implicated in the sensitization of ß-lactam antibiotics to MRSA. However, oligonucleotide gene regulators struggle to penetrate dense biofilms, let alone achieve efficient gene regulation inside bacteria cells. Herein, an eye-drop system capable of penetrating biofilms and targeting bacteria for chemo-gene therapy in MRSA-caused bacterial keratitis is developed. This system employed rolling circle amplification to prepare DNA nanoflowers (DNFs) encoding MRSA-specific aptamers and mecR1 deoxyribozymes (DNAzymes). Subsequently, ß-lactam antibiotic ampicillin (Amp) and zinc oxide (ZnO) nanoparticles are sequentially loaded into the DNFs (ZnO/Amp@DNFs). Upon application, ZnO on the surface of the nanosystem disrupts the dense structure of biofilm and fully exposes free bacteria. Later, bearing encoded aptamer, the nanoflower system is intensively endocytosed by bacteria, and releases DNAzyme under acidic conditions to cleave the mecR1 gene for PBP2a down-regulation, and ampicillin for efficient MRSA elimination. In vivo tests showed that the system effectively cleared bacterial and biofilm in the cornea, suppressed proinflammatory cytokines interleukin 1ß ï¼ˆIL-1ß) and tumor neocrosis factor-alpha (TNF-α), and is safe for corneal epithelial cells. Overall, this design offers a promising approach for treating MRSA-induced keratitis.


Assuntos
Ceratite , Staphylococcus aureus Resistente à Meticilina , Óxido de Zinco , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , DNA/metabolismo , Ampicilina/metabolismo , Ampicilina/farmacologia , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Ceratite/tratamento farmacológico , Ceratite/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo
9.
Biomed Pharmacother ; 165: 115017, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327588

RESUMO

The emergence of multidrug-resistant bacteria contributes to the necessity of developing novel infection treatment approaches. This study was designed to evaluate the antimicrobial and wound healing activities of platelet-rich plasma (PRP) in combination with ß-lactams (ampicillin and/or oxacillin) for the application on methicillin-resistant Staphylococcus aureus (MRSA)-infected skin. PRP was collected from the peripheral blood of healthy donors. The anti-MRSA activity was tested through a growth inhibition curve, colony-forming unit (CFU), and SYTO 9 assay. The PRP incorporation lowered the minimum inhibitory concentration (MIC) of ampicillin and oxacillin against MRSA. The combination of ß-lactams together with PRP showed a three-log CFU reduction of MRSA. The major components of PRP for eliminating MRSA were found to be the complement system and iron sequestration proteins, according to the proteomic analysis. The adhesive bacterial colony in the microplate was decreased from 2.9 × 107 to 7.3 × 105 CFU after the treatment of cocktails containing ß-lactams and PRP. The cell-based study indicated that keratinocyte proliferation was stimulated by PRP. The in vitro scratch and transwell experiments revealed that PRP improved keratinocyte migration. In the MRSA-infected mouse skin model, PRP appeared to show a synergistic effect for wound area reduction by 39% when combined with ß-lactams. The MRSA burden in the infected area was lessened two-fold after topical administration of the combined ß-lactams and PRP. PRP inhibited macrophage infiltration in the wound site to shorten the inflammatory phase and accelerate the initiation of the proliferative phase. No skin irritation was detected with the topical delivery of this combination. Our findings suggested that ß-lactams plus PRP was applicable to alleviate the problems associated with MRSA via dual antibacterial and regenerative activities.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Plasma Rico em Plaquetas , Infecção dos Ferimentos , Animais , Camundongos , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Proteômica , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Oxacilina/metabolismo , Oxacilina/farmacologia , Ampicilina/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
10.
Protein J ; 42(4): 316-326, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37170014

RESUMO

The rise of New Delhi metallo beta-lactamase (NDM) producing bacteria imposes a significant threat to the treatment of bacterial infections due to their broad spectrum against beta-lactams. The activity of metallo beta-lactamases is affected by active site residues as well as residues near the active site. Therefore, we aimed to identify the amino acid residues around the active site of NDM-4 which influence its function. To achieve that, seven substitution mutations (S191A, D192A, S213A, K216A, S217A, D223A and D225A) of NDM-4 were generated through site-directed mutagenesis. Out of these, expression of NDM-4_D192A and NDM-4_S217A in Escherichia coli cells increased the beta-lactam susceptibility as compared to NDM-4. Further, proteins were purified to assess the effect of substitution mutations on zinc content, in vitro catalytic efficiency, and stability of NDM-4. The catalytic efficiency was reduced for these mutants (D192A and S217A) towards beta-lactam substrates, while the thermal stability remained insubstantial as compared to NDM-4. However, the purified NDM-4_D192A exhibited altered zinc content. In silico studies reveal that these changes might be the outcomes of alterations in hydrogen bonding networks and substrate interactions. Taken together, we infer that the D192 and the S217 residues play a substantial role in the activity of NDM-4.


Assuntos
Antibacterianos , beta-Lactamases , Antibacterianos/química , Mutação , beta-Lactamases/genética , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Zinco/metabolismo , Testes de Sensibilidade Microbiana
11.
Antimicrob Agents Chemother ; 67(6): e0160322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199612

RESUMO

The ß-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for ß-lactams and ß-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All ß-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating ß-lactams. Imipenem yielded 1.5 ± 0.11 log10 killing at 1h compared to <0.5 log10 killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated (r2 = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future ß-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacologia em Rede , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Imipenem/farmacologia , Imipenem/metabolismo , Ceftazidima/metabolismo , beta-Lactamases/metabolismo
12.
J Antibiot (Tokyo) ; 76(8): 489-498, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37095236

RESUMO

Dissemination of class D OXA-type carbapenemases is one of the significant causes of beta-lactam resistance in Gram-negative bacteria. The amino acid residues present near the active site are involved in hydrolytic mechanism of class D carbapenemases, though it is not identified in OXA-23. Here, with the help of site-directed mutagenesis, we aimed to explicate the importance of the residues W165, L166 and V167 of the possible omega loop and residue D222 in the short ß5-ß6 loop on the activity of OXA-23. All the residues were substituted with alanine. The resultant proteins were assayed for the changes in activity in E. coli cells and purified for in vitro activity, and stability assessment. E. coli cells harboring OXA-23_W165A and OXA-23_L166A, individually, exhibited a significant decrease in resistance towards beta-lactam antibiotics as compared to OXA-23. Further, purified OXA-23_W165A and OXA-23_L166A imparted about >4-fold decrease in catalytic efficiency and displayed reduced thermal stability as compared to OXA-23. Bocillin-FL binding assay revealed that W165A substitution results in improper N-carboxylation of K82, leading to deacylation deficient OXA-23. Therefore, we infer that the residue W165 maintains the integrity of N-carboxylated lysine (K82) of OXA-23 and the residue L166 might be responsible for properly orientating the antibiotic molecules.


Assuntos
Escherichia coli , beta-Lactamas , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Domínio Catalítico
13.
J Biol Chem ; 299(5): 104630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963495

RESUMO

CTX-M ß-lactamases are a widespread source of resistance to ß-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 ß-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A ß-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.


Assuntos
Domínio Catalítico , Cefalosporinas , Resistência a Medicamentos , Escherichia coli , beta-Lactamases , Ampicilina/metabolismo , Ampicilina/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Catálise , Domínio Catalítico/genética , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Cefalosporinas/metabolismo , Cefalosporinas/farmacologia , Resistência a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Mutagênese , Penicilinas/metabolismo , Penicilinas/farmacologia , beta-Lactamas/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
14.
J Biol Chem ; 299(5): 104606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924941

RESUMO

L1 is a dizinc subclass B3 metallo-ß-lactamase (MBL) that hydrolyzes most ß-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed ß-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the ß-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1ß-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1ß-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1ß-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (ß) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and ß-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , beta-Lactamas , Humanos , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Carbapenêmicos/metabolismo , Cristalografia , Cinética , Stenotrophomonas maltophilia/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
15.
J Biol Chem ; 299(4): 104615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931392

RESUMO

Peptidoglycan (PG) is an essential and conserved exoskeletal component in all bacteria that protects cells from lysis. Gram-negative bacteria such as Escherichia coli encode multiple redundant lytic transglycosylases (LTs) that engage in PG cleavage, a potentially lethal activity requiring proper regulation to prevent autolysis. To elucidate the potential effects and cellular regulatory mechanisms of elevated LT activity, we individually cloned the periplasmic domains of two membrane-bound LTs, MltA and MltB, under the control of the arabinose-inducible system for overexpression in the periplasmic space in E. coli. Interestingly, upon induction, the culture undergoes an initial period of cell lysis followed by robust growth restoration. The LT-overexpressing E. coli exhibits altered morphology with larger spherical cells, which is in line with the weakening of the PG layer due to aberrant LT activity. On the other hand, the restored cells display a similar rod shape and PG profile that is indistinguishable from the uninduced control. Quantitative proteomics analysis of the restored cells identified significant protein enrichment in the regulator of capsule synthesis (Rcs) regulon, a two-component stress response known to be specifically activated by PG damage. We showed that LT-overexpressing E. coli with an inactivated Rcs system partially impairs the growth restoration process, supporting the involvement of the Rcs system in countering aberrant PG cleavage. Furthermore, we demonstrated that the elevated LT activity specifically potentiates ß-lactam antibiotics against E. coli with a defective Rcs regulon, suggesting the dual effects of augmented PG cleavage and blocked PG synthesis as a potential antimicrobial strategy.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Expressão Gênica , Estresse Fisiológico/genética , beta-Lactamas/metabolismo
16.
Chem Biol Interact ; 374: 110383, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754228

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening superbug causing infectious diseases such as pneumonia, endocarditis, osteomyelitis, etc. Conventional antibiotics are ineffective against MRSA infections due to their resistance mechanism against the antibiotics. The Penicillin Binding Protein (PBP2a) inhibits the activity of antibiotics by hydrolyzing the ß-lactam ring. Thus, alternate treatment methods are needed for the treatment of MRSA infections. Natural bioactive compounds exhibit good inhibition efficiency against MRSA infections by hindering its enzymatic mechanism, efflux pump system, etc. The present work deals with identifying potential and non-toxic natural bioactive compounds (ligands) through molecular docking studies through StarDrop software. Various natural bioactive compounds which are effective against MRSA infections were docked with the protein (6VVA). The ligands having good binding energy values and pharmacokinetic and drug-likeness properties have been illustrated as potential ligands for treating MRSA infections. From this exploration, Luteolin, Kaempferol, Chlorogenic acid, Sinigrin, Zingiberene, 1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-1-ene, and Curcumin have found with good binding energies of -8.6 kcal/mol, -8.4 kcal/mol, -8.2 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, -7.3 kcal/mol, and -7.2 kcal/mol, respectively.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Testes de Sensibilidade Microbiana
17.
Mar Drugs ; 21(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36827127

RESUMO

The title of this essay is as much a question as it is a statement. The discovery of the ß-lactam antibiotics-including penicillins, cephalosporins, and carbapenems-as largely (if not exclusively) secondary metabolites of terrestrial fungi and bacteria, transformed modern medicine. The antibiotic ß-lactams inactivate essential enzymes of bacterial cell-wall biosynthesis. Moreover, the ability of the ß-lactams to function as enzyme inhibitors is of such great medical value, that inhibitors of the enzymes which degrade hydrolytically the ß-lactams, the ß-lactamases, have equal value. Given this privileged status for the ß-lactam ring, it is therefore a disappointment that the exemplification of this ring in marine secondary metabolites is sparse. It may be that biologically active marine ß-lactams are there, and simply have yet to be encountered. In this report, we posit a second explanation: that the value of the ß-lactam to secure an ecological advantage in the marine environment might be compromised by its close structural similarity to the ß-lactones of quorum sensing. The steric and reactivity similarities between the ß-lactams and the ß-lactones represent an outside-of-the-box opportunity for correlating new structures and new enzyme targets for the discovery of compelling biological activities.


Assuntos
Antibacterianos , beta-Lactamas , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Penicilinas/metabolismo , Penicilinas/farmacologia , beta-Lactamases , Bactérias/metabolismo , Lactonas , Oceanos e Mares
18.
Antimicrob Agents Chemother ; 67(2): e0087122, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36719223

RESUMO

Ampicillin-ceftriaxone has become a first-line therapy for Enterococcus faecalis endocarditis. We characterized the penicillin-binding protein (PBP) profiles of various E. faecalis strains and tested for synergy to better inform beta-lactam options for the treatment of E. faecalis infections. We assessed the affinity of PBP2B from elevated-MIC strain E. faecalis LS4828 compared to type strain JH2-2 using the fluorescent beta-lactam Bocillin FL. We also characterized pbp4 and pbpA structures and PBP4 and PBP2B expression and used deletion and complementation studies to assess the impact of PBP2B on the levels of resistance. We tested penicillin-susceptible and -resistant E. faecalis isolates against ceftriaxone or ceftaroline combinations with other beta-lactams in 24-h time-kill studies. Two penicillin-susceptible strains (JH2-2 and L2052) had identical pbp sequences and similar PBP expression levels. One reduced-penicillin-susceptibility strain (L2068) had pbp sequences identical to those of the susceptible strains but expressed more PBP4. The second decreased-penicillin-susceptibility strain (LS4828) had amino acid substitutions in both PBP4 and PBP2B and expressed increased quantities of both proteins. PBP2B did not appear to contribute significantly to the elevated beta-lactam MICs. No synergy was demonstrable against the strains with both mutated PBPs and increased expression (L2068 and LS4828). Meropenem plus ceftriaxone or ertapenem plus ceftriaxone demonstrated the most consistent synergistic activity. PBP2B of strain LS4828 does not contribute significantly to reduced penicillin susceptibility. Neither the MIC nor the level of PBP expression correlated directly with the identified synergistic combinations when tested at static subinhibitory concentrations.


Assuntos
Enterococcus faecalis , beta-Lactamas , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Ceftriaxona/farmacologia , Penicilinas/farmacologia , Penicilinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
19.
J Biomol Struct Dyn ; 41(20): 10326-10346, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510677

RESUMO

ß-lactam resistance in bacteria is primarily mediated through the production of ß-lactamases. Among the several strategies explored to mitigate the issue of ß-lactam resistance, the use of plant secondary metabolites in combination with existing ß-lactams seem promising. The present study aims to identify possible ß-lactam potentiating plant secondary metabolites following in vitro and in silico approaches. Among 180 extracts from selected 30 medicinal plants, acetone extract of Ficus religiosa (FRAE) bark recorded the least IC50 value of 3.9 mg/ml. Under in vitro conditions, FRAE potentiated the activity of ampicillin, which was evidenced by the significant reduction in IC50 values of ampicillin against multidrug resistant bacteria. Metabolic profiling following HR-LCMS analysis revealed the presence of diverse metabolites viz. flavonoids, alkaloids, terpenoids, etc. in FRAE. Further, ensemble docking of the FRAE metabolites against four Class A ß-lactamase (SHV1, TEM1, KPC2 and CTX-M-27) showed quercetin, taxifolin, myricetin, luteolin, and miquelianin as potential inhibitors with the least average binding energy. In molecular dynamic simulation studies, myricetin formed the most stable complex with SHV1 and KPC-2 while miquelianin with TEM1 and CTX-M-27. Further, all five metabolites interacted with amino acid residue Glu166 in Ω loop of ß-lactamase, interfering with the deacylation step, thereby disrupting the enzyme activity. The pharmacokinetics and ADMET profile indicate their drug-likeness and non-toxic nature, making them ideal ß-lactam potentiators. This study highlights the ability of metabolites present in FRAE to act as ß-lactamase inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
beta-Lactamases , beta-Lactamas , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Ampicilina
20.
J Biomol Struct Dyn ; 41(19): 10096-10116, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36476097

RESUMO

Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-ß-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of ß-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum ß-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-ß-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-ß-lactam inhibitors of IMP-1 amenable for further experimental studies.


Assuntos
beta-Lactamases , beta-Lactamas , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo , Imipenem/farmacologia , Zinco , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA